LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

SECOND SEMESTER - APRIL 2013

MT 2503 - ANALY. GEOM. OF 3D, FOURIER SERIES \& NUM. THEORY

Date: 03/05/2013
Dept. No. \square

Max. : 100 Marks

Time: 9:00-12:00

SECTION - A

(Answer ALL questions)

1. Write the equation of the plane in the intercept form.
2. State the equation of the straight line passing through the points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$.
3. Find the coordinates of the centre and radius of the sphere $2 x^{2}+2 y^{2}+2 z^{2}-2 x+4 y+2 z-15=0$.
4. Find the equation of the sphere with centre $(-1,2,-3)$ and radius 3 units.
5. Define Fourier series expansion of a function $f(x)$.
6. If $f(x)$ is an even function what is the value of the Fourier coefficient b_{n} ?
7. Find the sum of divisors of 360 .
8. Find the number of integers less than n and prime to it when $\mathrm{n}=729$ and 720 .
9. If a, b, c are positive integers not all zero, show that $(a+b+c)(a b+b c+c a)>9 a b c$.
10. State Cauchy's inequality.
SECTION - B

(Answer any FIVE questions)

11. Find the equation of the plane passing through the points $(2,-5,-3),(-2,-3,5)$ and $(5,3,-3)$.
12. Find the symmetric form of the equation of the line of intersection of the planes $x+5 y-z=7$ and $2 x$ $5 y+3 z+1=0$.
13. Find the equation of the sphere with centre ($6,-1,2$) and touches the plane $2 x-y+2 z-2=0$.
14. Find the equation of the sphere which passes through the circle $x^{2}+y^{2}+z^{2}-2 x-4 y=0, x+2 y+3 z=8$ and touches the plane $4 x+3 y=25$.
15. Express $\mathrm{f}(\mathrm{x})=\frac{1}{2}(\pi-x)$ as a Fourier series with period 2π to be valid in the interval 0 to 2π.
16. Prove that the sum of integers less than N and prime to it including unity is $\frac{1}{2} N \phi(N)$.
17. Find the remainder obtained in dividing 2^{46} by 47 .
18. If $a_{1}, a_{2}, \ldots . . a_{n}$ is an arithmetic progression, show that $a_{1}{ }^{2} a_{2}{ }^{2} \ldots . a_{n}{ }^{2}>a_{1}{ }^{n} a_{n}{ }^{n}$. Deduce that if $n>2,(n!)^{2}>n^{n}$.

SECTION - C

(Answer any TWO questions) ($2 \times 20=40$)

19. (a) Find the equation of the plane which passes through the point $(-1,3,2)$ and perpendicular to the planes $x+2 y+2 z=5$ and $3 x+3 y+2 z=8$.
(b) Find the equation of the image of the line $\frac{x-1}{2}=\frac{y+2}{-5}=\frac{z-3}{2}$ in the plane $2 x-3 y+2 z+3=0$.

20 (a) Find the shortest distance between the lines $\frac{x-3}{-1}=\frac{y-4}{2}=\frac{z+2}{1}$ and $\frac{x-1}{1}=\frac{y+7}{3}=\frac{z+2}{2}$.
(b) A plane passes through a fixed point (a, b, c) and cuts the axes in A, B, C. Show that the locus of the centre of the sphere OABC is $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$.

21 (a) Show that $x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n x}{n^{2}}$ in the interval $[-\pi, \pi]$. Deduce that
$\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\ldots=\frac{\pi^{2}}{12}$ and $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots=\frac{\pi^{2}}{6}$.
(b) Show that if x and y are both prime to the prime number n show that $x^{n-1}-y^{n-1}$ is divisible by n and deduce that $x^{12}-y^{12}$ is divisible by 1365 .

22 (a) Show that $18!+1$ is divisible by 437 ,
(b) If x and y are positive quantities whose sum is 4 , show that $\left(x+\frac{1}{x}\right)^{2}+\left(y+\frac{1}{y}\right)^{2} \geq 12 \frac{1}{2}$.

